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and rubber particle size determinations 
in rubber-toughened polymers: a simple 
stereological approach and its application 
to the case of high impact polystyrene 
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The determination of the volume fraction ~ and of the particle size distribution F(R) of the 
rubbery phase is necessary in many rubber-toughened polymers. High impact polystyrene is a 
good model system in which such a determination has to be performed a posteriori. The more 
commonly used procedures, i.e. phase-separation methods, analysis of micrographs and indi- 
rect mechanical measurements, all present drawbacks and difficulties. A simple stereological 
method, in which some of these difficulties are avoided, is proposed for the determination of 
and of some features of F(R) from the analysis of micrographs. The validity of the method is 
tested by means of a wide numerical simulation. The proposed method, together with a stand- 
ard phase-separation procedure and with indirect, mechanical measurements, is tested experi- 
mentally on two series of high impact polystyrene and the collected data are compared and 
discussed. The results of this investigation suggest that approximate views relating elastic 
properties of rubber-toughened materials only to the rubber particle volume fraction, however 
this parameter has been measured, not considering the size, the morphology and/or the struc- 
ture of the rubber particles, are possibly questionable. 

1. Introduct ion 
Many two-phase materials are composed of a matrix 
in which a population of well dispersed, approxim- 
ately spherical particles is embedded; focusing on 
plastics, one can find a very large number of polymeric 
materials of this kind. It is well known that a success- 
ful strategy to improve the toughness of a brittle 
polymer involves the addition to it of many small 
rubber particles [1]: this is the case, for example, for 
high impact polystyrene (HIPS), consisting of a matrix 
of polystyrene (PS) and of polybutadiene rubber par- 
ticles, with diameters ranging from about 0.1 I~mup to 
several I~m. 

When a stable, preformed second phase is used, the 
determination of the size distribution of the particles is 
relatively easy to attain and the assessment of the 
dispersed phase volume fraction in the final product is 
just a matter of knowing the mixture proportions. 
However, in other cases, the second phase is produced 
during the polymerization of the matrix, as for HIPS, 
or formed during the final manufacturing steps, as, for 
instance, in the case of the polymeric blends obtained 
by melt mixing. So the analysis of the second phase 
content, qb, and/or of the particle size distribution 
function, F(R)  (intended to be the frequency density 
distribution of the particle radius normalized over the 

whole positive range) can be performed only a poste- 
riori, i.e. on the final two-phase material. 

Henceforth attention will be concentrated parti- 
cularly on HIPS, which is a good, simple model for a 
two-phase system that needs an a posteriori deter- 
mination of the second phase features; this does not 
mean, however, that the conclusions presented in this 
work can only apply to HIPS. In HIPS the rubbery 
phase formation ordinarily takes place during the 
process of bulk-polymerization and follows the stage 
of phase inversion [1, 2]. Because of this manufac- 
turing procedure, the second phase particles in the 
final product are generally composed of polybuta- 
diene (PB), styrene-butadiene graft and/or block co- 
polymer and by polystyrenic sub-inclusions: their size 
and number depend on several process parameters 
[1, 23. 

The characteristics of the rubbery second phase in 
HIPS influence the elastic modulus, the stress at the 
yielding point and the fracture toughness [3, 43. Thus, 
the dimensions of the composite particles play a very 
important role in the global mechanical performance: 
if the particles are too small, with diameter of about 
0.1-0.2 lam or less, they appear to be ineffective as 
toughening agents [1, 4-6], but they may contribute 
again to the toughening mechanism if a very small 
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number of big particles is also present [7-9]. So, an 
optimum particle size and distribution has to be 
sought. From this, it plainly follows that a useful 
understanding and control of the HIPS mechanical 
behaviour cannot avoid the characterization of its 
dispersed phase. More generally, the mechanical per- 
formance of all rubber-toughened polymeric systems 
depends in a decisive way on their inner morphology; 
there is a great need, then, to find precise experimental 
tools to determine ~b and F(R). 

In this paper we briefly review and analyse the 
HIPS second phase characterization procedures pro- 
posed and used in the past, showing how some factors 
have always been neglected. Then, we present a 
method, based on simple stereological principles, 
allowing reliable results to be obtained quickly from 
the image analysis o f  the material micrographs. 
(Stereology refers to the class of mathematical meth- 
ods for reconstructing the parameters defining a 
material structure in space from measured values 
obtained on a section of the structure.) A computer 
simulation and a wide experimental application of the 
method are also presented and discussed. 

2. Second phase characterization 
methods for HIPS 

Two different approaches are mainly reported in the 
literature, concerning the characterization of the 
second phase in HIPS and in other similar rubber- 
toughened systems. The first consists in the material 
separation, normally achieved by the selective solu- 
tion of the PS matrix, and then in the characterization 
of the separated, insoluble phase, usually called gel. 
The second one is based, in contrast, on the character- 
ization of the bulk material and normally uses the 
methods of image analysis applied to optical micro- 
scopy (OM) or to electron microscopy micrographs. 

2.1. Phase  separat ion me thods  
A method typically used to determine the HIPS sec- 
ond phase volume fraction is the Ruffing gel test [10]. 
In this procedure the material is dissolved in toluene 
and the rubbery phase is isolated by centrifugation. 
The toluene is then removed from the isolated, wet gel 
by heating under negative pressure. The ratio between 
the dry rubbery phase and the weight of the original 
sample is assumed to be the second phase weight 
fraction from which the second phase volume fraction 
is easily computed, taking the densities into account. 

The procedure introduced by Cigna [3] is, in princi- 
ple, the same. A sample of HIPS is dissolved in a 
mixture of 57% toluene and 43% methyl ethyl ketone 
(MEK). After centrifugation at 6000 r.p.m, the in- 
soluble part is separated as a swollen gel and needs to 
be washed, at least twice, with fresh solvent. The gel is 
then coagulated in methanol and dried overnight in an 
oven at 40 ~ Again the ratio between the weight of 
the dried gel and that of the original sample is con- 
sidered to be the second phase weight fraction. 

Separation methods involving the extraction of the 

rubber particles from the matrix are widely used also 
in the determination of the particle size distribution. A 
dry gel, produced by a method similar to those de- 
scribed above, can easily be observed with an optical 
microscope or a scanning electron microscope (SEM) 
and histograms reproducing the detected frequency 
versus the observed radius or diameter of the particles 
are obtainable from the micrographs [8]. Measure- 
ments are also possible directly on the solution in 
which the gel particles are suspended: this is the case, 
for example, in the low angle light scattering [11] and 
in the Coulter Counter experiments [12-14], which 
allow an estimation of the particle size distribution. 

All these procedures have some problems. The first 
is that of solvent choice: a procedure like, for example, 
the one proposed in Ref. 3 gives somewhat different 
values of gel weight for different solvents [15]. A 
possible cause lies in the fact that the PS sub-inclu- 
sions could be extracted from the particles in different 
proportions by different solvents. However, all the 
authors that used the selective solvent method impli- 
citly assumed that no extraction of the sub-inclusions 
had taken place. Another problem arises from the 
centrifugation. As Hall [16] demonstrated, the 
amount of rubber particles centrifuged depends on 
the rubbery phase cross-linking and on the rubber 
particle size: small particles are more difficult to cen- 
trifuge and the centrifugation efficiency increases as 
the rubbery phase cross-linking increases. 

These two difficulties, together with the fact that the 
particles could be partially swollen also after drying, 
affect the precision of the measurements of the volume 
fraction and of the particle size distribution as well. 
Similarly, the particle size distribution measurements 
made in solution take account of particles swollen by 
the solvent in which they are suspended and then a 
correction factor has to be applied, or the suspension 
has to be modified, replacing the solvent with a non- 
swelling liquid. 

Even if the indicated obstacles can be partially 
overcome, the phase-separation methods still have a 
major, unavoidable drawback: the division of the ma- 
terial into its constitutive phases necessarily involves 
severe physico-chemical manipulations, which could 
change its morphological characteristics. The features 
of the separated gel could be extremely different from 
those of the second phase in the bulk, and, to be sure 
of the data accuracy, a cross-check is definitely 
needed. 

Finally, a more subtle issue can be addressed: pre- 
sumably in HIPS a non-negligible amount of PS-PB 
graft and/or block copolymer lies on the interface 
between matrix and particles and it cannot be dis- 
solved by the PS-selective solvents, giving its contribu- 
tion to the gel and to the particle size distribution 
measurements. However, it is questionable whether 
from a mechanical point of view, the interracial PS 
branches or blocks should be computed in the rubbery 
phase. The graft and/or block copolymer is respons- 
ible for the adhesion between matrix and particles 
and, therefore, it is reasonable to assume that the 
particle size cannot be completely independent of the 
quantity of this interfacial material. Thus one can 
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expect, as a very first approximation, that small par- 
ticles could be associated with high interfacial tension 
and, consequently, with a considerable relative 
amount of interfacial matter. So, the fact that the PS 
part of the interracial copolymer is computed in the gel 
could cause difficulties when trying to correlate the 
phase-separated volume fraction data with the mech- 
anical properties, particularly when dealing with sam- 
ples containing small particles. In the Experimental 
section of this work this point will be discussed fur- 
ther, adding to the above qualitative considerations 
some experimental evidence. 

2.2. Microscopy characterization me thods  
The characterization of the second phase of the bulk 
materials requires the observation of the features of 
the two phases when they are tangled together in 
the solid state. This is usually by means of microscopy 
methods. Only techniques connected with OM and 
with transmission electron microscopy (TEM) will be 
discussed here, leaving some short considerations 
about SEM analysis and measurements to the next 
section. 

The first necessity for a microscopic survey is that of 
cutting from the sample a slice suitable for the obser- 
vation, i.e. transparent or partially transparent to the 
light or to the electron beam. For HIPS, the maximum 
thickness that one can utilize in OM is about 5-7 gin, 
while in TEM at 100 kV a sample 1 ~tm thick is 
already extremely dark. On the other hand, using 
sophisticated techniques of ultramicrotomy or of 
cryo-ultramicrotomy, the thinnest feasible HIPS slices 
are of about 0.07 gin. So, it is clear that the thickness 
of the sample, which could span two magnitude or- 
ders, is not an insignificant variable and cannot be 
neglected, particularly when quantitative measure- 
ments are claimed to be made. 

Next, it is important that the second phase could be 
distinguished from the matrix. This is achieved by the 
use of the phase contrast technique in OM and by 
several staining procedures in TEM, all derived from 
the original one developed by Kato using osmium 
tetroxide (OsO4) [17]. 

In phase contrast illumination, invisible retardation 
of phase due to slight variations in refractive index is 
converted to visible changes in light intensity, res- 
ulting in increased image contrast. The phase contrast 
is best for specimens with only very slight differences 
in the refractive indices. But, for PS and PB at room 
temperature, the refractive indices nD are 1.60 and 
1.52, respectively and thus their difference is quite 
large. This, together with the poor achievable magni- 
fication, makes the identification of the phase bound- 
aries in HIPS not really easy by OM. 

The staining techniques are based on the fact that 
the staining agent chemically reacts with a portion of 
the sample. This results not only in the addition of the 
heavy atom to the rubber phase, which provides con- 
trast for TEM, but also in the cross-linking of the 
rubber, Which makes it rigid enough to allow room 
temperature microtomy and increases the stability of 
the sample in the electron beam. The Kato staining 
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technique is widely applied, giving rise to very good 
images; however, caution must be used, owing to the 
extreme toxicity of OsO 4. It has to be noted, finally, 
that the staining agent can swell the particles, chang- 
ing somewhat their dimensions [18]. 

Following one of the described procedures, appro- 
priate micrographs of the material can be taken, with 
the limit for the OM that the maximum achievable 
magnification, requiring oil-immersed objective len- 
ses, is about 2500 x. The micrographs, which are two- 
dimensional projections of the spatial two-phase 
arrangement present in the considered slices, show, as 
a rule, a bunch of approximately circular (sometimes 
overlapped) section which represent the rubber par- 
ticles (see, for example, the TEM micrographs of HIPS 
in the Experimental section of this paper (Figs 10-12)). 
To reconstruct the second phase features, i.e. 40 and 
F(R), from such micrographs is a matter of image 
analysis and of properly taking into account the 
stereology of the process that gave rise to the micro- 
scopic observation. 

A basic rule of stereology is the Delesse-Rosiwal 
principle for areal and linear analysis. According to 
this principle, the volume fraction of a second phase 
randomly embedded in a structure is equal, under 
some, very broad, conditions, to its areal or linear 
fraction obtained on an ideal section, i.e. on a section 
with zero thickness [19]. This principle has been 
sometimes applied to the micrographs for the deter- 
mination of 40, not taking into account, however, the 
fact that the pictures always concern sections with a 
finite thickness t. We will show in the next section that 
the error involved in doing so is the greater the lower 
the ratio between the average particle size and t and 
that it becomes particularly critical when thick slices 
and/or small particles are under investigation. 

Bucknall and co-workers [20] considered the prob- 
lem of the thickness of the slice, using the following 
formula, proposed by Underwood [21]: 

4R 
40 - 4R + 3t 40~pp (1) 

where 40 is the second phase volume fraction in the 
bulk, t~)ap p the apparent volume fraction in the con- 
sidered section, t the section thickness and R the 
particle radius. Bucknall, in reality, did not propose 
exactly Equation 1; he replaced parameter R with/~, 
defining it as the mean particle radius. In that form the 
equation is not strictly true. It must be said, in fact, 
that Equation 1 applies only to the case of a mono- 
modal distribution of particles randomly arranged in 
space, i.e. to the case in which the material contains 
particles having all the same radius equal to R (in this 
paper the term "monomodal" will always have this 
precise meaning). If the particle size distribution is not 
monomodal, Equation 1 slightly changes its form, as 
will be seen in the next section. However, there is a 
more important ambiguity in this work; it is not clear 
how Equation 1 could be applied, as claimed, without 
trying to reconstruct the bulk particle size distribution 
from the two-dimensional distribution and without 
estimating the key parameter R. 



Concerning the determination of F(R), it is clear 
that the problem of the reconstruction of the bulk 
particle size distribution from their two-dimensional 
section radius or diameter distribution must be 
recognized. The problem can be analytically solved 
considering a distribution of spheres. Goldsmith [22] 
generalized a method developed by Wicksell [23, 24], 
considering an infinite section having thickness t. He 
derived a Volterra integral equation of the second 
kind for the relationship between the distribution of 
section radius,f  (r) (intended to be the frequency dens- 
ity distribution of the particle section radius normal- 
ized over the whole positive range, in analogy with 
F(R)), and the distribution of the spheres, F(R) 

2r (Rmax F(R)dR 
t F(r) + 

f(r) - (t + 2R~) (~ + 2R) j ,  x/R 2 ._  r 2 

(2) 

where Rma x is the largest sphere radius and /~ is the 
mean radius*. As in the more general case of all the 
integral equations, the handling of Equation 2 is not 
an easy matter. Experimentally one can arrive at 
merely a quite precise estimation of t and discretized 
approximation of f(r), generally in the form of a 
histogram. Also bypassing the mathematical prob- 
lems of existence and uniqueness of the solution func- 
tion F(R), this allows only the numerical solutions of 
Equation 2, i.e. following the method proposed by 
Goldsmith himself, to write and solve an elaborate 
system in order to reconstruct an histogram for F(R). 

As far as we know, no effort has been made by 
polymer scientists to apply Equation 2 to the deter- 
mination of F(R). Only Bucknall [20] mentioned a 
simplified version of the equation (with t = 0), but did 
not attempt to solve it. The usual approach, adopted 
by almost all the authors, consists, in fact, in ex- 
tracting only qualitative information concerning F(R) 
from the histograms off(r) ,  obtained by the micro- 
graphs. 

2.3. Other  charac te r i za t ion  m e t h o d s  
Other methods, which cannot be classified exactly as 
phase separation or microscopy and image analysis, 
have been used in the determination of the second 
phase characteristics of HIPS. 

Some authors utilized SEM on microtomed or frac- 
tured surfaces [257, sometimes using etching to en- 
hance the surface topography. Because the etching 
process generally involves a selective dissolution of the 
sample constituents or chemical reactions whose rates 
are different in the two phases, it faces, in principle, the 
same drawbacks that affect the phase separation 
methods. Moreover, the SEM images have to be pro- 
cessed, from a stereological point of view, as the TEM 
images, with the simplification that the slice thickness 
can be considered, to a sufficient approximation, zero. 
Nevertheless, as far as we know, no incontestable 

analysis of SEM data has been, up to now, presented 
in the literature. 

Another possibility is, for example, that of deter- 
mining the second phase volume fraction from the 
features of the peaks in the loss factor versus temper- 
ature curves [26, 27]. However, it has been shown that 
ideas with regard to the rubber peak size as relating 
to the rubber concentration or to the second phase 
volume content are complicated by additional consid- 
erations about the composition, morphology and 
methods of preparation of the materials [28]. 

Cigna [3] and later Bucknall et al. [20, 29, 30] 
noted that the elastic modulus of HIPS depends on 
the total second phase volume fraction, including also 
the polystyrenic rigid sub-inclusions. More theoretical 
studies substantially confirmed this view, demonstrat- 
ing that the difference in the mechanical elastic behavi- 
our between a system composed of entirely soft 
particles and another one, containing rigid particles 
only surrounded by a soft shell, is negligible [31, 32]. 
The elastic modulus, then, could be an appropriate 
measure of the rubbery phase volume fraction, but 
there is no clear evidence that this could be true for all 
particle structures and morphologies. It is also clear 
that such a determination needs a calibration curve 
and therefore cannot be considered as an absolute, 
independent method. 

3. Mathemat ica l  model 
3.1. Description 
As indicated in the previous section, the solution of the 
Volterra Equation 2 requires complex mathematical 
tools which are often over-sized for the purpose and 
the accuracy of the measurements involved in the 
rubber-toughened polymers characterization. How- 
ever, one definitely needs to have information con- 
cerning F(R) and a quite precise estimation of qb. In 
this section, then, a simple mathematical model is 
presented, based on very intuitive stereological as- 
sumptions, which allows information to be obtained 
about F(R) and qb without requiring intricate com- 
putational procedures. 

In this section an ideal two-phase material com- 
posed of a matrix and a population of spheres ran- 
domly arranged in space but distributed according to 
F(R) in size will always be considered and the exist- 
ence of a microscopic procedure is assumed which 
enables micrographs to be obtained from variably 
thick, but large enough sections where the phase 
boundaries could be exactly recognizable. A micro- 
graph is intended to be, from a mathematical point of 
view, simply the two-dimensional projection of the 
considered section (see Fig. 1). 

The radius of the ith particle is represented as R~ 
and its apparent radius in the projection as r~. It is 
obvious that, when the whole particle or at least its 
equatorial region is contained in the section, one has 
r~ = R~; on the other han& when the particle is cut by 

* It must be stressed that the particles are assumed to be arranged in size according to F(R), but randomly arranged in space. This means that 
their centres do not lie in any particular lattice layout. In fact, if one imagines particles distributed, for example, in a perfect cubic lattice it is 
possible to have planes in which no particle sections are visible (interplanar surfaces), violating both Equations 1 and 2. 
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Figure 1 A cube of an ideal material containing an embedded populat ion of spherical particles is sketched. (a) The cube is cut with a section 
having thickness tl and the arrow shows the corresponding view in which the particle sections are visible. (b) The same cube is cut with a 
thicker section with thickness t 2 and the corresponding view contains a larger number  of visible particle sections. 

the section excluding its equatorial region, r i < Ri 
holds. Thus, the thinner the considered section, the 
greater the difference between the particle size dis- 
tribution in the bulk and in the micrographs. 

On the other hand, it is easy to recognize that 
increasing the section thickness from zero to infinity, 
the apparent volume fraction of the second phase, i.e. 
the areal volume fraction, will increase correspond- 
ingly from the bulk volume fraction value (Delesse- 
Rosiwal principle) to 1 (Fig. t). 

To take into account quantitatively the described 
qualitative effects, a few definitions that will be useful 
in the following have here to be introduced. Consider 
a large enough volume region containing M particles 
and assume that the number of particles could be 
representative of the total distribution. Let the ath (a is 
a positive integer) moment of the radius distribution 
F(R) about zero be called (Ra),  defined as 

M 

E R7 
( R  a ) - -  i=1 (3) 

M 
By analogy the bth (b is a positive integer) moment of 
the section radius distribution f(r)  about zero, is the 
value (r  b) provided by 

N 
b rj 

(r b) _ j=l (4) 
N 

where rj represents the apparent radius of the jth 
particle contained in a given section and N is con- 
sidered to be sufficiently large that the number of the 
observed particles could be representative of the dis- 
tribution f ( r )  in an infinite section. Clearly the first 
moment of a distribution represents the number aver- 
age value of the distribution or, in other words, the 
mean value. 

For simplicity, let us start from the case in which all 
the particles have the same radius R and the con- 
sidered section has zero thickness; i.e. it is a mathemat- 
ical surface. It is evident that, for all a positive integers, 
the following relationship holds 

( R " )  = R ~ (5) 

The surface will intersect N particles, each of them will 
present a circular section whose radius rj will range 
from 0 to R, depending on the distance between the 
particle centre and the surface itself. The section radius 
distribution moments (r b) must now be calculated. 
To do that it is helpful to recognize that the sections 
on the surface are exactly distributed as the sections 
cut by planes on a single particle (see Fig. 2)*. If we 
imagine, at this point, a single sphere cut by N parallel 
planes equally spaced by e, i.e. 

Ne = 2R (6) 

the problem becomes that of the computation of the 

* We do not  demonstrate  this equivalence, which has to be accepted as intuitively evident. Indirect confirmations of the rightness of the 
approach will be given in the following. 
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Figure 2 The particle sections on a surface are distributed as the 
sections cut by planes on a single particle (monomodal distribution). 

section radius distribution moments cut by these 
planes (the moments are defined exactly as in Equa- 
tion 4, with self-evident adjustments in the meaning of 
the symbols). 

Referring to Fig. 2, two equations, concerning a 
(vertical) surface, A, and the volume, V, of the con- 
sidered particle, can be written 

N 

A = gR 2 ~  2 2arj = 2 N a  
j=l 

= 2Ne(r t>  

N 

4rcR3 ~ ~ ~(rcr 2) = Ngrc/'Y~---) 
V -  3 j=~ 

= N s x < r  2 > 

(7) 

(8) 

Taking Equation 6 into account, it is easy to recognize 
that Equations 7 and 8 become, respectively 

xR <rl> ~ - -  (9) 
4 

2R 2 
<re> --~ (10) 

3 

Clearly, Equations 9 and 10 are exact equations when 
the double limit N -* c~ and e -~ 0 is executed. 

From the last two relationships one can easily con- 
clude that the mean radius in the section is lower than 
the radius of the particles in the bulk; this is due to the 
process of cutting, which introduces into the projec- 
tion particle sections having radii lower than R. More- 
over, in the examined case, the Delesse-Rosiwal 
principle states that the apparent areal volume frac- 
tion coincides with the three-dimensional volume 
fraction. 

Now the more complex case must be considered in 
which the section radius distribution moments have to 
be computed on micrographs relative to specimens 
having finite thickness t, supposing again a mono- 
modal distribution of particles. Once more, the situ- 
ation can be assumed equivalent to the computation 
of the maximum section radius distribution moments 
cut on a single particle, instead of by a single surface, 
by two planes at a distance t one from the other. 

To make it clearer, let us imagine the particle in 
space and choose a direction, so that it could be 
possible to indicate the regions above and below the 
sphere. Let Pt and Pb be the top and bottom planes 
considered, having a vertical coordinate difference t, 
and imagine that the two planes, initially placed above 
the sphere, come down. They will start to intersect the 
particle when Pb will reach the upper pole of the 
sphere. The maximum sections between the two 
planes, which are those of interest for the comput- 
ation, will be detached by Pb up to moment in which it 
will go beyond the particle equator. The equator, then, 
will stay between Pt and Pb and the radius R will be 
computed as the maximum section radius until Pt will 
surpass it too. Eventually, the sections cut by Pt will be 
the maximum sections. 

It is quite easy to recognize now that the sections 
contained in a large micrograph with thickness t are 
exactly distributed as the sections cut by planes on a 
single, composite figure formed by an upper and a 
lower half-sphere, with radius R, and by a central 
cylinder with the same radius R and height equal to t. 

Imagine this figure again cut by N parallel planes 
equally spaced with a distance s: 

Ne = 2 R + t  (11) 

The problem, as before, becomes that of the com- 
putation of the section radius distribution moments 
cut by these planes. Two equations, concerning the 
area of a (vertical) surface, A, and the volume, V, of the 
composite figure, in analogy with Equations 7 and 8, 
can be written 

(12) 

N 

A = f o r  2 + 2 t R  ~ ~ 2srj 
j=l 

= 2 N ~ ( r  1 ) 

4rtR 3 N 

j = t  

{L 4/ 
= Ms/l; / ~ - -  ) ~--- N~/l;< F2 > ( 1 3 )  

Taking into account Equation 11, Equations 12 and 
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13 become, respectively 

r~R 2 + 2tR 
( r  1 ) ,,~ (14) 

4R + 2t 

4R 3 + 3tR 2 
< r 2 >  ~ - (15) 

6R + 3t 

The double limit N -o oe and e ~ 0 makes Equa- 
tions 14 and 15 exact equations, as above. It is also 
easily recognizable that Equations 14 and 15 are re- 
duced to Equations 9 and 10 when t is zero. 

For the computation of the apparent areal volume 
fraction, dOapp, a cube of material with volume L 3 must 
be considered. Supposing that the cube contains M 
particles, the bulk second phase volume fraction, do, 
will be estimated as 

4rcM R 3 
do - 3L 3 (16) 

It is possible, then, to introduce the number of par- 
ticles per unit volume, My, given by 

M 
Mv - L3 (17) 

Let us consider a section with thickness t and parallel 
to one side of the cube. This section will intersect the 
particles with centre included in the section itself or 
not further than R from one of the section surfaces. In 
order correctly to take into account all the particles 
intersected by this section, it must be assumed that the 
section has an effective volume, Ve, given by 

V e = L2(2R + t) (18) 

The number of particles, N, included in Ve will simply 
be 

M(2R + t) 
N ~ M~Ve - (19) 

L 

Because of the mathematical treatment developed 
above, the particles included in Ve can be assumed to 
all have the same maximum areal section equal to 
re(r2). So, the total surface covered by the areal 
section of the particles, S, will be 

S ~ rtN ( r 2 ) (20) 

At this point dOapp c a n  be easily computed as 

dOapp = SL-E (21) 

and then, using Equations 15, 16 and 20 

4R + 3t 
dOapp 4R dO (22) 

which is equivalent to Equation 1, considering the 
limit L --* oe. 

The above approach can be generalized for any 
particle size distribution F(R) (the outlines of this 
generalization are sketched in Appendix 1 of this 
paper) and Equations 14, 15 and 22 assume the more 
general form 

rc(R z) + 2 t ( g  1) 
( r l )  = 4 ( R  1) + 2t (23) 

4 ( R 3 )  + 3t(R 2) 
<r E ) = (24) 

6 ( R  1) + 3t 

4 ( R  3) + 3 t (R  2) 
doapp ~--- 4(R3 ) dO (25) 

with the implicit assumption that the previously men- 
tioned limits should all be considered. 

3.2. Geometrical meaning of Equations 23, 24 
and 25 

It is necessary to know how the features of the particle 
distribution in the bulk F(R) and the thickness t of the 
considered slice affect the distribution f(r)  in the sec- 
tion. First, it is convenient to introduce some para- 
meters that have a clear geometrical significance and 
that are easily related to the above defined moments. 
One can check that (R1) ,  ( R  2) and ( R  3) can be 
rewritten as 

( R I >  = /~ 

( R 2 )  = /~2(I + 

( R  3) = /~3(1 + 3132 

where/~ and the two coefficients, 
units in which F(R) is measured, 

/~ = ( R  1 > 
M 

( R i -  ( R 1 ) )  / 
132 = i = 1 (30) 

(26) 

132),. (27) 

-t- V~ 3) (28) 

independent of the 
13 and y, defined as 

(29) 

0-2 

( R 1 )  2 ( R 1 )  2 

M 
~" (R i - -  ( R 1 ) )  3 

i = l  
3̀  = 13a(R1)3 (31) 

have an exact geometrical meaning: /~ is the mean 
radius, 13, simply related to the standard deviation 0-, is 
a measure of the dispersion of the considered distribu- 
tion (the larger 13, the broader the distribution) and, 
finally, 7 is an estimation of the skewness of the 
distribution (if 7 assumes positive values, it indicates 
an excess of large positive deviations from the mean 
value, if 3' is zero the distribution is symmetrical 
around the mean value and if 3̀  is negative there is an 
excess of large negative deviations). It is important to 
remark at this point that the two parameters 13 and 3̀  
cannot vary arbitrarily; in fact, large values of [3 coup, 
led to large negative values of 3̀  imply, from a math- 
ematical point of view, that F(R) assumes non-zero, 
positive values also when R is negative, which is, of 
course, without any physical and geometrical sense. 
So, one has always to deal with low values of 13 and 7. 
Reasonable distributions are particularly character- 
ized by [3 below 1 and by 7 not greater than a few units 
in absolute value. Of course, ( r  1 ) and ( r  2) can also 
be interpreted by analogy as the mean radius and as a 
measure of the relative broadness of the apparent 
distribution. 

Equations 23, 24 and 25 can then be edited in the 
following form 

( r  1 ) ~(1 + 132)z + 2 
[31 - -  - -  (32) 

R 4~ + 2  
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P 2 -  
(r:) 4(1 + 3132 + 3,133)~ + 3(1 + 132) 
R 2 6z + 3 

(33) 

~app 3(1 + 13z) 
qb = 1 + 4(1 + 3132 + ,y133)..~ (34) 

where the parameter ~, defined as: 

-c = - ( 3 5 )  
t 

is a measure of the relative thinness of the considered 
specimen (the higher the value of z, the thinner the 
section with respect to the included particles). The 
content of Equations 32, 33 and 34 can be directly 
clarified using some graphs. 

Fig. 3 shows a three-dimensional plot of Pl versus 
"c and 13. The parameter 91 is the mean radius of the 
distributionf(r) with respect to the mean radius of the 
bulk distribution F(R). Then, if it assumes values 
inferior to 1, it means that particle sections with 
apparent radius lower than/~ are preponderant in the 
apparent distribution f(r). From Fig. 3 it is easy to 
conclude that, for small values of z, the apparent mean 
radius ( r  1 ) tends to be the same as/~, independently 
of 13, i.e. independently of the dispersion of F(R). This 
is quite clearly understandable if one realizes that low 
values of ~ imply that very thick sections, which can 
contain a large number of non-cut particles, are under 
observation. In this case, in fact, the apparent radius 
must coincide with the real one. 

Increasing �9 the ratio Pa changes, with different 
slopes corresponding to different 13. Notably, this 

change is strong particularly in the range of z which is 
of experimental interest for the characterization of 
HIPS and of several other two-phase polymeric ma- 
terials; assuming a section thickness of 0.2-0.3 gm, 
which is a reasonable value for a TEM specimen, the 
largest variation of Pl will take place corresponding to 
a range of particles having mean radius between 2 gm 
and 0.05 ~tm, which is the very range in which the 
rubber particles present in many rubber-toughened 
materials are contained. It is important to remark also 
that the dependence of Pl on 13 indicates that the 
broader the distribution in the bulk, the larger the 
apparent mean radius in the section results, giving rise 
to the noteworthy fact that very large distributions 
have a larger mean apparent radius in thin slices than 
in thick ones. Finally, it has to be added that the 
skewness of the bulk distribution F(R) does not influ- 
ence the mean radius in the section. 

Fig. 4 is a three-dimensional plot of P2 versus z and 
13, keeping 7 constant and equal to zero, i.e. consider- 
ing only symmetric distributions. The parameter P2 
can be considered as an evaluation of the relative 
dispersion of the distribution f(r), so the fact that it 
increases with increasing 13 for all values of-c is under- 
standable making the reasonable assumption that 
broad distributions in the bulk will give rise to broad 
distributions in the sections. It is noticeable also that 
the dependence of the broadness off(r)  on 13 is higher 
for large values of z, i.e. when thin slices are under 
consideration. In thin slices, in fact, the original dis- 
persion 13 has to be added to the one resulting from the 
cutting. Again, the region of z of experimental interest 
is the one in which the bigger variations in the para- 
meter 132 take place. 

1.6- 

1.4 I 
Pl 1.2, 

1.0 

O,B 

O.Z 

"4 

0.4 

-2 

0.6 

0 

Lo(j (Z) 

Figure 3 Three-dimensional plot of Pl versus logr and [3. 
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Figure 4 Three-dimensional plot of 132 versus logz and 13, keeping 7 = 0. 

Fig. 5 is a three-dimensional plot of [02 versus ~ and 
Y in which, this time, [3 has been kept constant and 
positive. When thick slices, containing several non-cut 
particles, are observed the broadness o f f ( r )  should 
depend only on the broadness 13 of the bulk distribu- 
tion and should not be affected by the skewness of 
F(R). In fact the value of 92 does not depend on 3' for 
very low values of ~. On the other hand, when z is 
larger, we observe that distributions that are nega- 
tively skewed in the bulk appear less dispersed than 
the symmetrical or the positively skewed ones. This is 
a good demonstration of the fact that the process of 
cutting influences in a complex way the resulting 
distribution~ 

Eventually, we come to discuss how qbapp/qb changes 
with varying z. Fig. 6 shows the three-dimensional 
plot of qbapp/qb versus z and [3, keeping ~ constant and 
equal to zero i.e. considering only symmetric distribu- 
tions. For high z the ratio qbapp/qb does not depend on 
[3 and tends to 1, according to the previously men- 
tioned Delesse-Rosiwal principle. 

On the other hand, when z tends to zero the para- 
meter qb,pp/qb tends to infinity: this means that #P,pp 
could have values larger than 1, which is without any 
geometrical significance. This is because it was not 
taken into consideration that, in a thick slice, many 
particle sections can overlap (the problem of the pos- 
sible overlapping of the particle projections in the 
section is discussed in its quantitative terms in 
Appendix 2). 

Anyway, from the observation of Fig. 7, one can 
conclude that the broadness of a generic, symmetric 
distribution does not affect significantly the parameter 
qbapp/qb and that the considerable slope variation in 
~avp/qb takes place only for low values of z. 
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The situation partially changes when one comes to 
consider skewed distributions. In Fig. 7qbapp/qb is plot- 
ted versus z and 7, keeping [3 constant and positive. 
Again, no dependence on 3' can be observed when �9 is 
high, always according to the Delesse-Rosiwal princi- 
ple; however, for low values of ~, the skewness slightly 
affects the slope of the curves: increasing 3' the value of 
qbapp tends to decrease with respect to qb and this effect 
takes place in the range of practical interest. 

3.3. Application of Equations 23, 24 and 25 
From a given, sufficiently large micrograph coming 
from a sample with known thickness t, it is possible to 
compute (rb), with b a positive integer, and qbapp. So 
Equations 23, 24 and 25 have four unknowns, i.e. 
( R 1 ) ,  (R  2), (R  3) and qb. To reduce the system to 
linearity and for more simplicity, one can recognize 
that, if ( R 1 ), ( R  2 ) and ( R  3 ) are known, qb is easily 
computable from Equation 25. The problem can then 
be limited to consider only Equations 23 and 24, 
which are linear in the unknowns (R1) ,  ( R  z) and 
( R  3 ). Even so, we have at this point a linear system of 
only two equations and three unknowns, which is in 
general not solvable. 

In Appendix 1 the generic equation giving the ex- 
pression for (rk), with k > 2, is derived. However, 
adding further equations for the higher moments of 
f(r) does not help in the solution of the linear system. 
In fact, the generic ( r k ) is given as a function (R  1 ), 
( R  k) and ( R  k +1 ), then the number of the unknowns 
is always higher than that of the equations. This 
impasse can be avoided if it is assumed that the 
particle distribution function F(R) has specific, known 
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Figure 5 Three-dimensional plot of P2 versus log(r) and 7, keeping 13 = 0.2. 
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Figure 6 Three-dimensional plot of dPapp/( ~ versus "r and 13, keeping 7 = 0. For low values of'r, ~)app/(~ tends to increase beyond the limits of the 
box in which the plot is contained and then no surface is plotted in that region. 

features, for example  tha t  it is m o n o m o d a l  or  log- 
normal ,  as some d i s t r ibu t ions  in r u b b e r - t o u g h e n e d  
po lymers  are supposed  to be: in this case to Equa t ions  

23 and  24 a generic  re la t ionship  can be a d d e d  of  the 

form g ( (R 1 ) ,  (R2 ) ,  ( R a ) )  = O, mak ing  the system 
at least  numer ica l ly  computab le .  

Nevertheless ,  there  is a s impler  possibi l i ty,  which 
avoids  non-expe r imen ta l  a s sumpt ions  and makes  it 
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Figure 7 Three-dimensional plot of qb.pp/qb versus z and 7, keeping 13 = 0.275. For low values of ~, d~pr,/~ tends to increase beyond the limits 
of the box in which the plot is contained and then no surface is plotted in that region. 

possible to deal only with linear, easily solvable sys- 
tems. If, in fact, several measurements of the para- 
meters are made on pictures from samples having 
different thickness t~, the number of equations in- 
creases: namely if, from the same material, n different 
cuts have been done, a system of 2n equations with 
three unknowns can be written from Equations 23 
and 24 

ti: a l , l ( R  i )  + al.z(R 2) + al,3(R 3) 

a 2 , 1 ( R  1) + a2 ,2 (R  2)  + a 2 , 3 ( R  3) 

t2: a 3 , 1 ( R  i )  + a 3 , 2 ( R  2)  + a 3 , 3 ( R  3)  

a4, i ( R  1) + a 4 , 2 ( R  2)  + a 4 , 3 ( R  3)  

tn: a 2 . _ l , i ( R  l )  + a2 ._ i ,2 (R 2) 

+ a 2 . _ i , 3 ( R  3) = b2n_ i 

a 2 . , l ( R  l )  + a2. ,2(R 2) + a2. ,3(R 3) = 

= bl (36) 

= b 2 (37) 

= b 3 (38) 

= b4(39) 

(40) 

b2n 
(41) 

where the coefficients ai,i and bi are easily computable 
when n different thicknesses t~ are considered. 

When n > 1 the system is clearly overdetermined: 
there are more equations than unknowns. To state the 
situation in a matricial form we have: 

A ( R )  = b (42) 

where A and b have the obvious meaning of the system 
coefficient matrix and column vector and ( R )  is the 

6004 

column vector 

( R  

( R )  = (R e) (43) 

( R  3 ) 

Saying that the system is overdetermined is equal to 
stating that the matrix A has more lines than columns. 
Strictly speaking, then, Equation 42 will not have 
solutions, unless some lines in A are linearly depend- 
ent, and such a system is called non-consistent. How- 
ever, overdetermined systems are often encountered 
during experimental work and several procedures 
exist that give useful results. All the methods deal with 
the so called rest vector, s, defined as 

s = A ( R )  - b (44) 

Because, in general, it is impossible to make s equal to 
zero, one can attempt to choose ( R )  in order to make 
s minimum in some way. 

The easiest procedure (the one that will be followed 
in the Experimental section) is the least squares 
method, which consists in finding ( R )  that makes 
minimum the quantity s T. s, where s T is the line vector 
transposed from s and the multiplication dot is in- 
tended for the standard matricial multiplication. It is 
simple to demonstrate that this is equivalent to sol- 
ving the system 

( a i , a l ) ( R  i ) + ( a l , a 2 ) ( R  2)  + ( a l , a 3 ) ( R  3)  = (al,b) 

(45) 



(az,ai)(R 1) + (a2,a2)(R z) + (az,a3)(R 3) = (a2,b) 

(46) 

(a3,al)(R 1) -F (a3,az)(R 2) + (a3,a3)(R 3) = (a3,b) 

(47) 

where (ai, a j), defined as 

(a~, aj) = al,lal, j + az,~az, j + . . .  + azn,r 
(48) 

is clearly the scalar product between the two column 
vectors az and aj. 

We mention here another widely used method: the 
C,ebyshev or rain-max method, into the details of 
which we need not go. It is sufficient to remember that 
this method consists of choosing ( R )  in order that the 
maximum component of the rest vector s should be 
minimum. The system is then transformed in a series 
of linear disequations that can be treated using the 
routines of linear programming such as, for example, 
the simplex algorithm. It could be, finally, useful to 
remember that the rain-max method is more appropri- 
ate than the least squares one when there are one or a 
few components of the rest vector that tend to be 
markedly larger than the others or when further 
conditions have to be associated with the system. 

4. Numerical simulation 
Because some of the assumptions made in the pre- 
vious section have only an intuitive foundation, it is 
important to check the validity of the formulae thus 
derived using an independent method before applying 
them to practical cases. The process of cutting and 
that of image production can be easily simulated using 
a computer program, so we developed one in FOR- 
TRAN, the general outlines of which are sketched in 
this section. The program can be divided in two main 
parts: the first concerning the input procedure and the 
routine for the particle arrangement and the second 
strictly limited to the elaboration. 

4.1. Input 
The program consists in constructing the Cartesian 
simulation of a cube of material containing several 
particles and then in splitting one or more sections of 
defined thickness on which the requested comput- 
ations are made. The algorithm that we used then 
requires, as input parameters, 

- the volume fraction qb of the second phase, 
- the approximate number M of particles to be con- 
sidered in our simulated cube of material, 
- information about the particle size distribution 
F(R). 

We considered only monomodal,  pseudo-random, 
normal and log-normal distributions but, as will be 
clear in the following, the algorithm can easily be 
adapted for all the distributions that have a F(R) 
which can be expressed in analytical form. 

4. 1.1. Monomodal distribution 
This is the simplest case: the radius R is the only 
parameter to be introduced. The program, then, will 
consider M particles all having the same radius R. 

4. 1.2. Pseudo-random distribution 
In this case the radius of the particles is assumed to be 
distributed randomly from a minimum value Rmi. and 
a maximum value Rm,x. The program uses, for each 
of the M particles to be introduced, a generator of 
pseudo-random numbers calibrated between Rm~ n 
and Rm~, in order to assess the radius. 

4. 1.3. Normal distribution 
The expression of F(R) for a normal distribution is 

l ( (R -/~)2~ 
F ( R ) -  x / ~  exp ~-cr ~- j (49) 

where/~ is the mean radius and cy the standard devi- 
ation. It is important to observe that the normal 
distribution, being symmetrical around the mean 
value, always has positive values of F corresponding 
to negative values of R, which does not have geometri- 
cal meaning in our specific case. Let us, then, consider 
the distribution only in a positive interval given in 
standard deviation units as [ / ~ - N ~ ,  /~ + N~cy] 
with (_ff - N~a) > 0. If we divide this interval into No1 
sub-intervals each of length equal to AR and centre 
coordinate Ri, the normalization property of F(R) 
implies that 

Ncl 
y, F ( & ) A R  ~ 1 (50) 

/ = t  

when the distribution does not possess considerable 
queues for large values of ( R - / ~ ) 2  and when Nc~ 
tends to infinity. The value AR can be easily termed as 

2N~c~ 
AR - (51) 

Ncl 

then Equation 50 becomes 

~'  2N~,cr 
y, F(Ri) 1 (52) 

i = 1 Nc] 

We said that the purpose of the program is to 
introduce in the considered cube of material M par- 
ticles, whose radii should be distributed according to 
F(R). If we consider the same N~I radius intervals 
mentioned above, the number n~ of particles having 
radius R~ inside the ith interval has to satisfy the 
condition 

Nel 
Y. n, ~ M (53) 

i = 1  

At this point it is easy to recognize, from the previous 
equations, that the number of particles to be intro- 
duced in the class having mean radius R~ is 

2 M N ~  
ni F(RI) (54) 

No1 
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The program then requires as input parameters: 

The mean radius of the normal distribution/~, 
- the standard deviation of the normal distribution or, 

the amplitude of the interval in which the distribu- 
tion is considered (in standard deviation units) 2N~, 

- the number of classes in which the considered inter- 
val is divided Ncl, 

and, for each radius Rz defined as: 

2iN~cy 
R i = R - -  N , ~ c y  + - -  ( 5 5 )  

Ncl 

it introduces a number of particles corresponding to 
that given in Equation 54. Of course this discretized 
distribution in size will better mimic the continu- 
ous normal distribution as the ratio (2MN~c~)/Nr 
increases. 

4. 1.4. Log-normal  distribution 
The so-called log-normal distribution is a distribution 
normal when the x-axis is plotted on a logarithmic 
scale. The expression for F(R) in this case is the 
following 

1 { - ( l n R - R L )  2 } 
F(R) - X/-~(YLR exp 2-cy~ (56) 

where /~L and o L are parameters characterizing the 
mean value and the standard deviation of the distribu- 
tion in logarithmic scale. It is easy to calculate that 
the mean value/~ and the standard deviation cy are 
instead given by 

~ = (exp(2/~L + ~ ) ( e x p ( ~ ) - - 1 ) )  1/2 (58) 

Therefore an approach similar to that developed for 
the normal distribution, using/~ and ~, can be adap- 
ted when a given log-normal distribution has to be 
discretized. 

4,2. Particle arrangement 
The program now possesses M particles for which it 
has memorized the radius R i distributed according to 
the selected distribution F(R). The distribution mo- 
ments can then be easily computed according to the 
formulae given in the previous section and the par- 
ticles have to be arranged in space. 

The program chose to dispose the particles inside a 
cube having Cartesian coordinates 0 <_ xl < L (i = 1, 
2, 3). The cube edge is computed as 

( 4rc(R 3 ) M  )1/3 
z, = \ (59) 

consistently with all the input data. Then, using a 
pseudo-random number generator calibrated between 
0 and L, the centre coordinates (xl(i), X2(i), x3(i)) of 
each ith particle are generated, taking into account 
that all the particles must be contained in the 
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considered cube: 

(j = 1,2,3),Vi = 1,2,3 . . . .  M 

(j = 1,2,3),Vi = 1 , 2 , 3 , . . . M  

(xj(i) -- Ri) > 0 
(60) 

(xj(i) - Ri) < L 

(61) 

and that the particles cannot overlap 

Vi, Vj= 1 , 2 , 3 , . . . M  

~k~=l (Xk(i) - -  Xk(j)) 2 ~ Ri + Rj (62) 

The easiest way, from the programming point of 
view, to get the three above conditions satisfied is to 
iterate the use of the random number generator each 
time that the centre coordinates produced do not meet 
the requirements. Of course, when a large number of 
particles is considered and/or when we are trying to 
simulate a material having a considerable value of 
second phase volume fraction, this method becomes 
dramatically time-consuming because it has to find 
free spaces inside the particle arrangement only by 
random guessing. In these cases some simple strategies 
can be developed, like, for example, introducing bigger 
particles first. 

4.3. Elaboration 
The elaboration part of the program is dedicated to 
the simulation of the cutting and image analysis pro- 
cesses. For simplicity we choose to have the slices cut 
along planes parallel to the first two axes. Always 
using the pseudo-random number generator the mean 
third coordinate h of the slice is introduced with the 
restriction that the whole thick slice should be con- 
tained in the cube, i.e. 

h t >  
- 2 - 0 ( 6 3 )  

t 
h + ~ < L (64) 

The computation of the section moments ( r  b) (b is a 
positive integer) and of the apparent volume fraction 
qbapp follows simply by determining which particles are 
completely or partially included in the section. 

From a mathematical point of view the generic j th 
particle for which the two conditions 

t 
x3(j) - Rj < h + ~ (65) 

t 
xa(j) + Rj > h - ~  (66) 

are satisfied gives its contribution both to the section 
moments and to the apparent volume fraction. Of 
course, if in the cube we have M particles, the particles 
satisfying Equations 65 and 66 will be N with N "_< M. 
From now then we will consider only these N. 

When the j th particle has its equatorial region con- 
tained in the section, i.e. when 

t 
Xa(j) > h - ~ (67) 



t 
x 3 ( j )  ~_ h -t- - (68) 

2 

are satisfied, it is easy to conclude that 

rj = R j  (69) 

On the other hand, the section will cut the particle off 
from its equatorial region: in this case the following 
expression gives the value of the apparent radius 

rj = max RE -- x 3 ( j ) - -  h + 

So the moments and the apparent volume fraction can 
be computed as 

N 
b rj 

( r  b) = j=t (71) 
N 

N 

j :  1 (72) ~)app -- L 2 

If the precision in the computation has to be increased 
one can choose to examine more than one section. 

The values obtainedfrom Equations 71 and 72 do 
not have any relationship with Equations 23, 24 and 
25, so the simulation can be considered a test for their 
validity. 

Many simulations have been performed; they in- 
volved all the four different particle size distributions 
described, with different combinations of parameters 
so that variably large and skewed distributions have 
been tested (always more than 2000 particles in the 
section have been considered) and consistently an 
excellent agreement has been found between the 
theoretical values estimated by Equations 23, 24 and 
25 and those computed using Equations 7l and 72. 
Figs 8 and 9 show the accord between the data from 
the simulations and the theoretical relationships in the 
simple case of monomodal distributions. 
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Figure 8 Plot of 9i versus logz. The solid line represents the 
theoretical relationship from Equation 32 and the symbols are data 
from the numerical simulation. The simulation concerned only 
monomodal distributions. 
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Figure 9 Plot of ~.pp/@ versus logz. The solid line represents the 
theoretical relationship from Equation 34 and the solid circles are 
data from the numerical simulation. The simulation concerned only 
monomodal distributions. 

5. Experimental  procedure  
The main conclusion drawn in the previous sections 
was that the thickness of the observed slices becomes a 
very important parameter in image analysis, especially 
when the ratio between the mean particle radius and 
the thickness itself varies from about 0.1 to 10, which is 
the range of practical interest for many rubber-tough- 
ened materials observed by TEM. 

An impressive confirmation of the great influence 
that the thickness of the samples has on the final 
features of micrographs is given in Figs 10 and 11. The 
two pictures come from the same material (the charac- 
teristics of which will be described in the following), 
cut in slices having different thicknesses, lower and 
higher, respectively. For instance, it is immediately 
seen that the apparent volume fraction is extremely 
different in the two pictures. So far, there is a real, 
practical need to take into account the factors ana- 
lysed in the previous sections. 

In this section an experimental work will be de- 
scribed on two series of different HIPS: attention will 
be concentrated on the second phase volume fraction 
measurement, using for its determination different and 
independent methods, the first of which is the one 
based on the approach of image analysis previously 
developed. 

5.1. Materials 
Two different HIPS were studied, indicated in the 
following simply as HIPS1 and HIPS2, containing 
particles having very different size and structure. In 
HIPSI (see Fig. 12) the particles are relatively big, with 
the so-called "salami" structure, while the particles in 
HIPS2 (see Figs 10 and 11) are smaller, exhibiting the 
more simple "core-shell" structure. 

The different dimensions and structure of the par- 
ticles in the two materials are obtained during the 
polymerization process; it is important to remark that 
a very critical role is played by the amount and nature 
of the matter at the interface between bulk PS and 
particles, which, of course, will be in some ways differ- 
ent in the two materials. From the HIPS1 and HIPS2 
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Figure 10 TEM micrograph of HIPS2 from a slice exhibiting a silver interference colour corresponding to a thickness Of about  0.075 gm. 

Figure 11 TEM micrograph of HIPS2 from a slice exhibiting a green interference colour corresponding to a thickness of about  0.260 pro. 
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Figure 12 TEM micrograph of HIPS1 from a slice exhibiting a gold interference colour corresponding to a thickness of about 0.120 gm. 

two complete series of materials, indicated as 
HIPSI(1), HIPSI(2), HIPSI(3), HIPSI(4) and 
HIPS2(1), HIPS2(2), HIPS2(3), HIPS2(4), were ob- 
tained by melt mixing in increasing proportions PS 
homopolymer (having approximately the same mo- 
lecular characteristics as the matrices in the two ori- 
ginal materials) in order to obtain materials with 
dispersed phases in the proportion of 1, 3/4, 1/2 and 
1/4 with respect to the original ones. 

TABLE I Slice thickness associated with different interference 
colour according to Ref. 33 

Interference colour Thickness (gin) 

Silver 0.075 
Gold 0.120 
Purple 0.170 
Blue 0.215 
Green-yellow 0.260 

5.2. Second phase volume fraction and 
particle size distribution determination 
by means of image analysis 

For each material of the two series, several T E M  
micrographs from samples having different thickness 
were taken. The slices were cut using an ultramicro- 
tome and the thickness was determined by floating the 
cut slice on the water surface, estimating the inter- 
ference colour (Table I shows the thickness associated 
with different interference colours) [33]. Slices show- 
ing more than one, unambiguous interference colour 
were not considered. Before the microtoming all the 
samples were immersed in an aqueous solution of 
OsO4 for 2 days; as explained before, the staining 
procedure facilitates the cutting. 

The cut slices were observed and photographed 
using an 100 kV TEM, taking care not to excessively 
condense the electron beam. This ensured that no 

deformation due to heating by electron absorption 
took place inside the samples. For  each material and 
for each slice thickness the number of pictures taken 
was sufficient always to examine more than 400 par- 
ticle sections. The micrographs were then analysed 
using a computerized Nachet-Vision image analysis 
system. Using a grey scale the particle sections were 
first separated from the background constituted by the 
PS matrix, then, by means of an appropriate use of 
filling and erosion routines, the particle sections, in- 
cluding their inner sub-inclusions, were delimited and 
individually considered. This procedure introduced 
cuts in correspondence to overlapped regions that, 
however, were always few and reduced in area in all 
the samples considered (see Appendix 2). 

Assuming that all the particles were perfectly circu- 
lar, which was quite true because the bulk samples had 
been preventitively thermally treated in order to avoid 

6009 



an i so t ropy  due to molecu la r  or ien ta t ion ,  the a p p a r e n t  
rad ius  r i of each par t ic le  sect ion was c o m p u t e d  as: 

r i = (73) 

where  S~ was the par t ic le  sect ion surface obta ined ,  by  
means  of  a s t ra igh t fo rward  ca l ibra t ion ,  f rom its num-  
ber  of pixels. The  m o m e n t s  ( r  b)  (b is a posi t ive 

integer) were c o m p u t e d  accord ing  to the prev ious ly  
men t ioned  formulae  and  the a p p a r e n t  second phase  
vo lume fract ion s imply as the ra t io  be tween  the num-  
ber  of pixels imaging  the par t ic les  and  the to ta l  
n u m b e r  of pixels. 

In  Tables  II  and  III ,  for each ma te r i a l  and  for each 
specimen thickness,  the values of the  first two sect ion 
rad ius  d i s t r ibu t ion  moments ,  of the a p p a r e n t  vo lume 
fract ion and  of  the n u m b e r  of  observed  par t ic les  are  
repor ted .  I t  is easy to observe  tha t  a general  t r end  
exists in the d a t a  of qb,pp measu red  on  the same 
mate r i a l  with specimens having  different thickness:  
qbapp increases and  it can also doub le  when the thick-  
ness is var ied  f rom a b o u t  0.07 gm to a b o u t  0.25 pm. 
A less p r o n o u n c e d  t rend  exists also in the d i s t r ibu t ion  
m o m e n t s  tha t  tend  to increase too,  increas ing the 
specimen thickness.  

Equa t ions  23, 24 and  25 have now to be app l ied  to 

this prac t ica l  case: because  there are five different 
measurement s  made  co r re spond ing  to five different 
thicknesses,  we are  deal ing with an  overde te rmined  
system of equat ions .  I t  is i m p o r t a n t  to stress, at  this 
point ,  tha t  the de t e rmina t i on  of the d i s t r ibu t ion  mo-  
ments  ( R " )  (a = 1, 2, 3) does not  depend  on the 

second phase  vo lume fract ion value,  but  only on the 
thickness  of the examined  section. In  fact, if a large 

enough  sect ion is observed  and  then a sufficient num-  
ber  of part icles ,  the sect ion radius  d i s t r ibu t ion  is the 
same, independen t ly  of the vo lume fraction: in o ther  
words,  one mus t  ob ta in  the same values of < R " )  
ana lys ing  pictures  coming  from a sample  with differ- 
ent  vo lume fract ion values, bu t  with the same thick-  
ness. Then  the prec is ion in the c o m p u t a t i o n  of ( R  " )  
can be increased s imply by  consider ing,  for HIPS1  
and  HIPS2 ,  an  average of the d a t a  coming  from 
samples  having  the same thickness,  not  cons ider ing  
the second phase  volume fraction.  Thus  can be der ived 
from the d a t a  only  one system of equa t ions  for HIPS1  
and  one for HIPS2 ,  concern ing  a very large n u m b e r  of 
measu red  par t ic les  sections (in Tables  II  and  I I I  the 
averaged  values and  the system equa t ions  are also 
displayed).  App ly ing  the least  squares  method ,  the 

TABLE II Image analysis data for HIPS1 

Thickness, t Material Observed ( r 1 ) 
(gm) particles (lain) (I.tm 2) (lam) (lam 2) 

0.075 HIPSI(1) 368 0.239 
0.075 HIPSI(2) 587 0.216 
0.075 HIPS 1(3) 535 0.190 
0.075 HIPSI(4) 782 0.235 
0.120 HIPS 1(1) 466 0.229 
0.120 HIPSI(2) 578 0.226 
0.120 HIPSI(3) 539 0.228 
0.120 HIPS 1(4) 644 0.227 
0.170 HIPSI(1) 368 0.242 
0.170 HIPSI(2) 558 0.216 
0.170 HIPSI(3) 535 0.237 
0.170 HIPSI(4) 1000 0.209 
0.215 HIPSI(1) 385 0.243 
0.215 HIPS 1(2) 503 0.231 
0.215 HIPS 1(3) 518 0.242 
0.215 HIPSI(4) 913 0.237 
0.260 HIPS 1(1) 407 0.205 
0.260 HIPS 1(2) 512 0.247 
0.260 HIPS 1(3) 590 0.235 
0.260 HIPSI(4) 902 0.227 

0.102 0.0742 0.0677 
0.083 0.1489 0.1358 
0.070 0.2121 0.1935 
0.096 0.2763 0.220 0.087 0.2520 
0.094 0.0750 0.0650 
0.101 0.1494 0.1295 
0.105 0.2369 0.2053 
0.110 0.3010 0.227 0.103 0.2608 
0.110 0.0867 0.0712 
0.091 0.1492 0.1225 
0.105 0.2312 0.1898 
0.086 0.2905 0.222 0.095 0.2385 
0.122 0.0865 0.0678 
0.112 0.1809 0.1417 
0.102 0.2309 0.1810 
0.108 0.3163 0.238 0.110 0.2479 
0.088 0.1005 0.0753 
0.115 0.1797 0.1347 
0.111 0.2616 0.1961 
0.098 0.3297 0.230 0.103 0.2472 

Equations 23, 24 and 25 give rise to the following ten equations 

- 0.730<R 1) + 3.141(R 2) = 0.330 
- 0.526(R 1) + 0.225(R 2) + 4<R 3) = 0.020 
-- 0.670(R 1) + 3.141(R 1) = 0.055 
-- 0.617(R 15 + 0.360(R 25 + 4(R 35 = 0.037 
- 0.547<R 15 + 3.141(R 2) = 0.075 
- 0.569(R ~) + 0.510<R 25 + 4<R 3) = 0.048 
- 0.521(R ~) + 3.141(R 25 = 0.102 
-- 0.658<R ~) + 0.645<R 25 + 4 ( R  3) = 0.071 
-0.397(R ~) + 3.141(R 2) = 0.119 
- 0.618(R 15 + 0.780(R 25 + 4(R 35 = 0.080 

from which, applying the least squares method described in the text, it is possible to obtain 

( R 1 ) = 0.240 lain, < R 2 ) = 0.069 lam a, ( R 3 ) = 0.040 lam 3, and 132 = 0.184 7 = 16.628. Using these values, together with data of d~ap w 
can easily compute from Equation 25 the values of qb displayed in the table. 
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T A B L E  I I l  Image analysis data for HIPS2 

Thickness, t Material Observed <r 1 ) ( r  2 ) ~app <r I ) ( r2 )  (b 
(~tm) particles (~tm) (gm 2) (gin) (gin 2) 

0.075 HIPS2(1) 433 0.0782 0.0068 0.0518 0.0340 
0.075 HIPS2(2) 471 0.0795 0.0069 0.0849 0.0556 
0.075 HIPS2(3) 670 0.0867 0.0083 0.1463 0.0959 
0.075 HIPS2(4) 722 0.0845 0.0078 0.2020 0.0829 0.0076 0.1324 
0.120 HIPS2(1) 339 0.0843 0.0078 0.0562 0.0305 
0.120 HIPS2(2) 421 0.0927 0.0093 0.1028 0.0558 
0.120 HIPS2(3) 603 0.0896 0.0089 0.1462 0.0794 
0.120 HIPS2(4) 681 0.0823 0.0075 0.1796 0.0869 0.0083 0.0975 
0.170 HIPS2(1) 363 0.0904 0.0090 0.0700 0.0319 
0.170 HIPS2(2) 405 0.0990 0.0106 0.1140 0.0520 
0.170 HIPS2(3) 550 0.0947 0.0100 0.1502 0.0685 
0.170 HIPS2(4) 653 0.0907 0.0091 0.2141 0.0935 0.0096 0.0977 
0.215 HIPS2(1) 342 0.0971 0.0103 0.0769 0.0307 
0.215 HIPS2(2) 487 0.0964 0.0101 0.1316 0.0525 
0.215 HIPS2(3) 627 0.0983 0.0106 0.1819 0.0726 
0.215 HIPS2(4) 658 0.0943 0.0098 0.2384 0.0964 0.0102 0.0951 
0.260 HIPS2(1) 336 0.0973 0.0102 0.0749 0.0265 
0.260 HIPS2(2) 490 0.1020 0.0112 0.1466 0.0519 
0.260 HIPS2(3) 1186 0.1030 0.0117 0.2261 0.0801 
0.260 HIPS2(4) 584 0.1030 0.0119 0.2550 0.1021 0.0115 0.0903 

Equations 23, 24 and 25 give rise to the following ten equations 

- 0.1816(R 1) + 3.141(R 2) = 0.0124 
- 0.0454(R 1) + 0.225(R 2) + 4 ( R  3) = 0.0017 
- 0.1076(R 1) + 3.141(R 2) = 0.0209 
-- 0.0500(R 1) + 0.360(R 2) + 4 ( R  3) = 0,0030 
- 0.0338(R 1) + 3.141(R 2) = 0.0318 
- 0.0578(R ~) + 0.510(R z) + 4 ( R  3) = 0,0049 
- 0.0442(R 1) + 3,141(R 2) = 0.0415 
- 0.0614(R 1) + 0.645(R 2) + 4 ( R  3) = 0.0066 
- 0 . l l 1 5 ( R  ~) + 3.141(R 2) = 0.0531 
- 0.0687(R 1) + 0.780(R 2) + 4 ( R  3) = 0.0089 

from which, applying the least squares method described in the text, it is possible to obtain 

( R  1) = 0.1372 gin, ( R  ~) = 0.0117 pm 2, ( R  3) = 0.00171am 3, and 132 = - 0.380. Assuming that ( R  2) = (RX)  2 and (R  3) = ( R I )  ~ 
(monomodal distribution) each one of the ten equations reported above can be solved. Averaging all the solutions one obtains a mean value 
and a standard deviation: ( R ~ ) = 0.1070, cr(( R ~ ))  = 0.0060. Using these values, together with the data of ~app, one can easily compute from 

Equation 25 the values of d~ displayed in the table. 

values of ( R " )  for HIPS1 and HIPS2 are easily 
obtainable and they are also displayed in Tables II, 
and III. 

HIPS1 shows a broad, positively skewed particle 
size distribution. The solution values ( R  ~) for HIPS2 
are, on the other hand, not satisfactory: the value of 13 2 
is negative which is without any geometrical meaning. 
The mathematical reason for this drawback lies in the 
fact that the least squares method does not exclude 
solutions: in principle, for example, it could choose a 
solution in which one of the moments is negative. As 
we mentioned, using the simplex algorithm, one can 
introduce further conditions in the system resolution, 
like, for example, that the moments (R a) and 132 
should all be positive. Our purpose, however, is to 
keep the solution of the system as simple as is accept- 
able: more simply, then, one can imagine that the best- 
fitting non-contradictory HIPS2 distribution should 
be extremely narrow and attempt to solve the system 
assuming the particle size distribution monomodal. 
So, taking Equation 5 into account, for each of the ten 
equations concerning HIPS2 it is possible to obtain a 
value of R and then to mediate between them. In 

Tables II and III the mean value of the solution is 
always displayed, together with its standard deviation 
which is of about 5% and more than satisfactory for 
this kind of measurement, confirming that the as- 
sumption of monomodal distribution is reasonable. 

Now that the values of ( R  a) for the two materials 
have been obtained, the value of do for each specimen 
thickness can be computed. These values are displayed 
in Tables II and III. It is easy to observe that, for each 
material of the two series, the application of the math- 
ematical treatment to the values of doapp obtained from 
differently thick samples gives rise to values of dO which 
contain little or no scattering, confirming the validity 
of the approach. 

5.3. Second phase volume fraction 
determination by means of a selective 
solvents separation method 

For each material of the two series the measurements 
of the second phase volume fraction have been made 
following the method previously described in Refer- 
ence 3. 
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5.4. Second phase volume fraction 
determination by means of an indirect 
method 

For each material of the two series, measurements of 
the Young's modulus E in three-point bending and 
dual cantilever geometries and of the shear modulus G 
in torsion have been performed. The measurements 
were made using, respectively, a Rheometrics RSA II 
and a Rheometrics RMS 800 on specimens obtained 
from compression-moulded plates. The moduli were 
measured in a dynamic regime with sinusoidal strain 
pulses of about 0.05% at a frequency of about 6.3 
rad s-1. The data are displayed in Table IV. 

5.5. Discussion 
Table IV summarizes the results obtained for each 
material in the two series by applying the three differ- 
ent methods for the determination or estimation of qb. 

First, data from the proposed image analysis 
method and from the separation procedure are com- 
pared. Fig. 13 shows a plot of the second phase 
volume fraction values obtained from the image ana- 
lysis, indicated as qb~A, and those from the separation 
procedure, indicated as qb,. From the figure it is easy to 
conclude that qb~A > ~b, for HIPS1 and qblA < qbs for 
HIPS 2. A possible explanation of this fact, not com- 
pletely unexpected, can be traced in some of the fea- 
tures of the separation process that, as we anticipated, 
have been in the past somewhat neglected or over- 
looked. In the separation process, for instance, it can 
happen that not all the second phase is separated 
properly and that the material inside the sub-inclu- 
sions is extracted. Also, the PS part of the interfacial 
matter is computed in the gel measurements, while it is 
not in the image analysis method. So, we believe these 
facts to be the most reasonable cause of the data 
discrepancy showed in Fig. 13. 

One can imagine that in HIPS2 the PS interfacial 
matter could be relatively higher than in HIPS1, giv- 
ing rise to higher values of the second phase volume 
fraction computed using the separation procedure, 
while it is possible that not all the HIPS1 particles 
would have been well centrifuged or that a non- 
negligible amount of material would have been 
extracted from the sub-inclusions. A more accurate 
investigation of the causes of these discrepancies is 

definitely needed, however it is not essential to this 
paper. 

It is interesting at this point to check if the pre- 
viously reported experimental evidence of the depend- 
ency of the elastic modulus only on the second phase 
volume fraction is also confirmed by our data. Cigna 
[3] drew his results plotting the values of G modulus 
versus the second phase volume fraction obtained by 
his separation method: he considered materials having 
big particles with salami structures formed during the 
polymerization process or bulk rubber particles ob- 
tained by simple melt mixing and found quite a good 
correlation showing that qbs is the only parameter 
affecting G. Doing the same, plotting our values of G 
versus the values of qbs, we find that the two materials 
data split in two different sets (see Fig. 14, which also 
contains the data from Ref. 3): to have HIPS1 and 
HIPS2 with the same shear modulus one needs to 
consider the HIPS2 with greater qb~ (the situation is 
essentially the same if one considers the Young's 
modulus E). This fact, however, is not sufficient to 
affirm that G does not depend only on the rubbery 
phase volume fraction: qb~, as mentioned above, prob- 
ably measures different characteristics in structurally 
different materials and, while it would have been a 
convenient estimation of the rubbery phase volume 
fraction for Cigna's homogeneous set of materials and 
for HIPS1, it is not for HIPS2. 

The values of qb~A seem plausibly more appropriate 
to be plotted versus G. Nevertheless the splitting of 
data still occurs, the situation being completely re- 
versed with respect to the previous case: HIPS1 has a 
greater IqblA than HIPS2 when the modulus is constant 
(see Fig. 15). The fact that some mathematical simpli- 
fications are involved in the computation of qb~A, for 
example the assumption that the particles considered 
should be perfectly spherical, and that these simplific- 
ations can introduce some systematic errors, is not 
sufficient, in our opinion, to account for the data 
splitting concerning HIPS1 and HIPS2 shown in Fig. 
15 that must be imputed to differences existing in the 
two sets of materials. 

So, despite the existence of a general trend relating 
G and qb, however this parameter has been measured, 
the last results induce one to believe that a strict 
relationship cannot be found when the materials 
under investigation contain rubbery phases having 

TABLE IV Second phase volume fraction from different experimental procedures and elastic moduli data 

Material Volume fraction Volume fraction Young's modulus, Young's modulus, Shear modulus, 
qblA , qb~ E, by E, by G 
by image by separation 3-point bending dual cantilever (MPa) 
analysis (MPa) (MPa) 

HIPSI(1) 0.0694 0.044 2849 2795 1163 
HIPS 1(2) 0.1328 0.092 2500 2436 1022 
HIPSI(3) 0.1931 0.144 2177 2143 857 
HIPSI(4) 0.2493 0.192 1886 1933 736 
HIPS2(1) 0.0307 0.047 2945 2907 1256 
HIPS2(2) 0.0536 0.097 2763 2654 1127 
HIPS2(3) 0.0793 0.145 2555 2452 1049 
HIPS2(4) 0.1026 0.196 2376 2341 934 
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Figure 13 Plot of the second phase volume fraction data obtained 
from image analysis versus those obtained by the Cigna separation 
procedure for (a) HIPS1 and (b) HIPS2. The continuous line repre- 
sents qblA = ~,,. the dashed lines are guides for the eye. 
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Figure 14 Plot of the shear modulus G versus the values of second 
phase volume fraction obtained from the Cigna separation proced- 
ure. (O) HIPS1; ( i )  HIPS2; (�9 HIPS containing particles with 
salami structures (data from Reference 3); ( •  HIPS containing 
bulk rubber particles obtained from melt-mixing (data from Refer- 
ence 3). The dashed lines are guides for the eye. 
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Figure 15 Plot of the shear modulus G versus the values of second 
phase volume fraction obtained from image analysis of (a) H1PS1 
and (b) HIPS2. The dashed lines are guides for the eye. 

well accounted for either in dos or in d01A, the size, 
structure and morphology of the particles playing 
most likely a very fundamental role. Bucknall [30] 
already showed data of HIPS having the same rub- 
bery volume fraction and different moduli, accounting 
for this fact with the different structure and morpho- 
logy of the rubber particles which could be responsible 
for quite a large variation of the moduli of the particles 
themselves. Regardless of the fact that his second 
phase volume fraction measurements are dubious, we 
can share here his assessment: assuming that the ma- 
terials behave as if they contain entirely soft inclusions 
(having a volume fraction equal to qb~A or qbs), not 
taking into account the large differences in the particle 
structure, seems to yield a broad approximation. 

6. Conclusions 
The determination of the second phase volume frac- 
tion and of the particle size distribution is extremely 
important and necessary in many rubber-toughened 
polymers containing the toughening agents in the 
form of small, soft particles randomly dispersed in the 
matrix. 

HIPS is a good model system for such materials: 
generally the rubber phase forms during the polym- 
erization process and its features have to be deter- 
mined a posteriori .  

The determination procedures of the rubbery phase 
features in HIPS have been briefly reviewed, with 
particular attention to the separation procedures, to 
microscopic methods involving some image analysis 
methodology and to indirect estimations concerning 
mechanical measurements, showing how some factors 
have always been neglected or overlooked. 

A simple method to be used in the image analysis of 
micrographs, based on an elementary stere�9 
assumption has been proposed: attention has been 
focused on the ratio between the mean particle radius 
and the thickness of the observed specimen. The 
method can give useful results when samples with 
different thickness are examined. 

The method has been successfully tested using a 
computer simulation routine which gave results well 
in agreement with the theoretical relationships. 

The proposed method, together with a standard 
separation procedure and indirect mechanical meas- 
urements, has been tested experimentally on two series 
of HIPS having particles with different size and 
structures. 

One of the results of this experimental investigation 
suggests that approximated views relating elastic 
properties of HIPS (and more generally of rubber- 
toughened polymers) only to the rubber particle 
volume fraction, however it has been measured, are 
possibly questionable. 

extremely different morphological and structural 
characteristics, as in the case of HIPS1 and HIPS2. 
The mechanical elastic behaviour of the two materials 
appears to be influenced by variables which are not 
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Appendix 1. Derivation of 
Equations 23, 24 and 25 
Let us start by considering M particles, the ith of them 
having radius R~ and the radii being distributed fol- 
lowing a given F(R). Using the same argument ex- 
pressed in the text, one can recognize that the sections 
on a large enough slice of thickness t are distributed as 
the sections cut by planes on the composite figure 
composed by M parts, each formed by two half- 
spheres having radius R~ and by a central cylinder 
having the same radius and height equal to t. 

Consider now the ith of these figures cut by Ni 
parallel planes equally spaced with a distance c 

Nic = 2R~ + t (A1) 

The fact that the number of figures considered is now 
M implies that Equations 12 and 13 have to be 
generalized in the following form: 

M M 

A t o  t ----- ~. Ai = ~. (TzR 2 + 2tRi) 
i = 1  i = 1  

M Ni 

= M(~(R 2) + 2t(R1)) ,,~ ~ ~ 2srtoj 
i=l j=l 

M Ni 

Vtot = Z Vi = + ntR 
i = 1  i = 1  

+ u t ( R  2 

M Ni 
i = 1  j = l  i=1 ~ /~lNi / 

= (i=~l eNirc)(r 2 ) (A3) 

where A t o  t is the total (vertical) surface area, Vto t the 
total volume of the composite figure, r(i)j represents 
thejth section radius of the ith particle and the defini- 
tions of the moments have been modified as follows 

M 

~, R,". 
(R a) _ i=1 (A4) 

M 

M Ni 

Z 2 r,,, 
(r b) _ i=1;=1 (A5) 

M 

Si 
i = 1  

Using Equations Al, A4 and A5, Equations A2 and 
A3 can be easily transformed into Equations 23 and 
24. 
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Equation 25 can be derived following exactly the 
same procedure adopted in the text, taking into ac- 
count that the value of ( r  2) is now expressed by 
Equation A3 and that the proper definition of qb in the 
generic case is 

4rtM( R 3 ) 
, 3L 3 (A6) 

The outlines of the derivation of Equations A2 and A3 
admit a generalization that allows the calculation of 
the generic ( r  b ) with b > 2 and then to obtain further 
information about the geometrical features of the dis- 
tribution, such as its kurtosis. In fact it is true that 

O , ( (R" ) )  + t O , _ l ( ( R ' - l ) )  

= (2(R 1 ) + t ) O . _ l ( ( r " - l ) )  (A7) 

where Ok((Rk)) is given by 

2kKint(k/2) 
Ok((Rk)) = k (Rk )  (AS) 

1-I i 
i = even/odd 

where int(k/2) means the integer part of k/2 and the 
product sign FI is intended only on the even i when k is 
even and on the odd i when k is odd (from a geometric 
point of view Ok((R k )) is the volume of the k-dimen- 
sional sphere having radius (( R k )) Uk). 

Appendix 2. Overlapping particle 
sections 
Equations 23, 24 and 25 have been derived supposing 
phantom particles, i.e. particles which can be inter- 
penetrated. Clearly, this is not a realistic condition, 
however Equations 23 and 24 do not change their 
appearance if one introduces the non-overlapping re- 
quirement 

Vi, Vj = 1 , 2 , 3 , . . . M  

( ~k=l (Xk(i)--xk(j))2) 1/2 >R,  + Rj (A9) 

where i and j are indices labelling the particles, (xl (i), 
x2(i), x3(i)) and ( x I ( j )  , x 2 ( j )  , x3(j) ) are the Cartesian 
coordinates in a given frame of the ith andjth particle 
centres and R i and Rj their radii (Equation A9 is 
equivalent to Equation 62 introduced as a condition 
in the simulation program). 

The situation concerning r and qb is more com- 
plex: also if Equation A9 is verified, the particle sec- 
tions in a micrograph from a thick sample can be 
overlapped and the definition Of the apparent volume 
fraction must take into account this overlapping. It is 
now understandable that the mathematical model de- 
veloped computes the parameter qbap p as 

N N 

g(A;) ~ ur 2 teN(r2 > j=l j=l 
( ~ ) a p p  - -  L 2 - -  L 2 "~ L 2 

(A10) 

where Aj represents the single jth particle projection 
on the considered section and rj and g(Aj) its radius 
and its Cartesian measure, respectively. (N is the 



particles number in the section and L 2 the total sec- 
tion area.) However, from an experimental point of 
view, it is extremely difficult to resolve the contribu- 
tion of a single particle in a cluster of two or more 
overlapped particles*, then the parameter generally 
measured using the standard image analysis methods 
is qb~p, definable as 

g Aj 

L 2 

N 

where U Aj represents the union of all the Aj. 
./=~ 

It is possible to demonstrate that 

The computation of the apparent volume fraction qb~p 
defined as in Equation A11 is simply given by the ratio 
between the number No of the occupied cells and the 
total number of cells N~ • Arc. Of course the accuracy 
of this computation increases as the linear dimension 
of the squared cells decreases or, which is equivalent, 
N~ increases. 

Fig. A1 shows a plot of d~ (e~/& computed from "r a p p / ' r  a p p  

the above described routine versus d~/z for simulated 
materials having particles with monomodal distribu- 
tion in size. As expected, c~ ~)/c~ is very close to -r  a p p / ' r  a p p  

unity when ~b/z is low, while it scales as d~/~ for high 
values of ~)/~. 

p A~ Aj - g  A i Aj Ak + p. A i Ai A~ Ah -- . . .  
i>~ j>k ~>k k>h (A12) 

The two parameters ~Dap p and qb(a~p are then similar 
only when a small number of intersected (overlapped) 
particles is contained in the examined pictures, i.e. 
when thin sections and/or materials having very low 
second phase volume fraction values are under invest- 
igation. 

Despite the laborious nature of the analytical COrer 
putation of A12, it is important, at this point, to assess 
quantitatively how the overlapping depends on the 
variables introduced. Clearly when the examined sec- 
tion thickness is well below the average particle radius 
no overlapping is possible and then (~p  and ~app tend 
to coincide, while, when the section thickness is much 
larger than the particle radius, one can imagine that, 
at least for monomodal distributions, the ratio 
d~ /~(~) scales as qb/~. No easy guess, however, is a p p  / "r" a p p  

possible in the intermediate region, which is the one of 
greater experimental interest. 

A possible way to avoid these obstacles is the nu- 
merical modelling of the problem. Equation 72 used 
for the computation of (~)app in the numerical simu- 
lation does not take into account the possible over- 
lapping between particle sections, in perfect analogy 
with the theoretical Equation 25, nonetheless the 
numerical simulation represents the simplest way 
available to estimate quantitatively the effect of over- 
lapping. To do that we introduced in the previously 
described program a simple routine. The generic sec- 
tion was considered to be a square having linear 
dimension equal L, inside which can be constructed a 
grid having N~ x N~ squared cells and, for each generic 
kth cell, we can consider the two-dimensional co- 
ordinates of its centre (x~ (k), x~(k)). We assume that, if 
this centre point of the cell is contained at least in one 
particle section, the entire cell has to be considered 
occupied by the second phase. Mathematically the kth 
cell has to be accounted if 

3j ( ~=1 (x i ( j ) -  x~(k))2) ~/2<-rj (A13) 

From an experimental point of view, on the other 
hand, one can obtain merely qb~ap~p and z and not the 
value of qb until the computation of qb,pp. So, it is 
interesting to plot the ratio "*'app,'rapp~(e>/'d) versus ~(a~v/Z in 
order to estimate ~ ) a p p  from known quantities. Fig. A2 
shows such a plot for the same data displayed in 
Fig. A1. The arrow indicates the maximum experi- 
mental ascissa obtained from our experimental sam- 
ples, confirming that the data we collected were 
distinguished by no or very low overlapping. 

Fig. A2 demonstrates that the overlapping is not 
important until the parameter qb~a~p/z is greater than 
unity. Subsequently, increasing qb~p/'c, the overlap- 
ping quickly becomes critical, making the estimation 
of qbapp and then of ~ practically unattainable. A 
consequence of this result is that the quantitative 
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Figure AI Log-log plot ~1 of ~,vp/~,pp versus ~ / r .  The symbols are 
data  from the numerical simulation. For large values of d2/"c the  plot 
exhibits a slope of approximately unity, demonstrating that 
dO~p/6~pp scales as qb/~. 

* Some sophisticated image analysis systems can obtain estimations of ~)app because they are able to create an hierarchy in the contrasts of the 
examined image. However, this estimation becomes more approximate when the number of overlapped particles and/or  the thickness of the 
examined section are very large. 
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Figure A2 Log-log plot of (~p/~,pp versus ~ p / ~ .  The symbols are 
data from the numerical simulation. The arrow indicates the region 
of ~ p / x  in which the larger experimental values that we obtained 
are contained. 

analysis of optical micrographs for which qb~p)p/x as- 
sumes values significantly greater than unity is highly 
questionable. 
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